Porównywanie potęg
A. X<Y
B. X=Y
C. X>Y
D. 3X=4Y
Rozwiązanie:
X = 88889999
X = 88881111 ∙ 88888888
niech a = 88888888
X = 88881111 ∙ a
niech b = 8888
X = b1111 ∙ a
X = 88881111 ∙ 88888888
niech a = 88888888
X = 88881111 ∙ a
niech b = 8888
X = b1111 ∙ a
Y = 99998888
Y = (9/8 ∙ 8888)8888
Y = (9/8)8888 ∙ 88888888
niech a = 88888888
Y = 9/88888 ∙ a
Y = [(9/8)8]1111 ∙ a
niech c = (9/8)8
Y = c1111 ∙ a
Y = (9/8 ∙ 8888)8888
Y = (9/8)8888 ∙ 88888888
niech a = 88888888
Y = 9/88888 ∙ a
Y = [(9/8)8]1111 ∙ a
niech c = (9/8)8
Y = c1111 ∙ a
Jeżeli b>c to (b1111 ∙ a)>(c1111 ∙ a) zatem, X>Y
Post nr 99
Post nr 99
Brak komentarzy:
Prześlij komentarz