Tweety na temat @MinorMatematyka

Pomoce dla klasy

Szukaj na tym blogu lub wpisz post nr 1-535

Logarytm jako wyrażenie

Jak zapisać logarytm za pomocą wyrażenia?



Wiedząc, że log5=a i log3=b. Wyznacz wartość logarytmu jako wyrażenie.


Wiedząc, że log5=a i log3=b. Wyznacz wartość logarytmu jako wyrażenie.

Rozwiązanie:
Definicje i własności 
Logarytmem dodatniej liczby b przy podstawie a jest wykładnik potęgi c, do której należy podnieść a, aby otrzymać b, co zapisujemy następująco:


\large \log_{a}b=c \Leftrightarrow a^{c}=b



Gdzie a - podstawa logarytmu, b - liczba logarytmowana, c - wynik logarytmowania. 

Przy czym, spełnione muszą być warunki a \in R^{+} - \{ 1 \} \text{ i } b \in R^{+}.

Ponadto :arrow: \large \log_{a}1=0, \ \log_{a}a=1, \ a^{\log_{a}b}=b.

Wyróżniamy też dwa szczególne logarytmy:
Logarytm dziesiętny, to logarytm o podstawie 10. \log b=c \Leftrightarrow 10^{c}=b
Logarytm naturalny, to logarytm o podstawie e. \ln b=c \Leftrightarrow e^{c}=b
(Liczba e jest granicą ciągu nieskończonego (1+\frac{1}{n})^{n}, gdy n dąży do nieskończoności i e \approx 2,72.)

Prawa działań na logarytmach 
Założenia dla podstaw logarytmów i liczb logarytmowanych są analogiczne z tymi u góry. Warunki dla nowych stałych zostaną przedstawione w każdym z przypadków z osobna.

:arrow: \large \log_{a}(b_{1}\cdot b_{2})=\log_{a}b_{1}+\log_{a}b_{2} - logarytm iloczynu

:arrow: \large \log_{a}\frac{b_{1}}{b_{2}} = \log_{a}b_{1}-\log_{a}b_{2} - logarytm ilorazu

:arrow: \large \log_{a}b^{m}=m\cdot \log_{a}b, \ m \in \mathbb{R} - logarytm potęgi

:arrow: \large \log_{a}b = \frac{\log_{c}b}{\log_c{a}} \\ \phantom{MMMMM} ^{\nwarrow}_{\swarrow} \mbox{ zmiana podstawy logarytmu}
:arrow: \large \log_{a}b = \frac{1}{\log_{b}a}, \ a, b \in (0, 1)  \cup (1, +\infty)

Z ostatnich własności wynika również wzór:

:arrow: \log_{a} b \cdot \log_{c} d = \log_{a} d \cdot \log_{c} b







Wiedząc, że log5=a i log3=b. Wyznacz wartość logarytmu jako wyrażenie.
















Post nr 477

Brak komentarzy:

Prześlij komentarz

WESPRZYJ BLOGA ZRZUTKĄ


Czytelniku, komentując nie każdy będzie mógł tu pisać co chce. 
Korzystanie z bloga oznacza akceptację Regulaminu.
Regulamin bloga
1. Myśl zanim coś napiszesz – zanim zechcesz skrytykować podane sposoby rozwiązania zadań zastanów się jak możesz z tego skorzystać. Niemniej niektóre wskazówki po Twojej modyfikacji mogą dobrze Ci służyć. Myśl samodzielnie.
2. Wskazówki mogą pomóc Ci zrozumieć matematykę.
3. Kopiując posty z bloga skorzystaj z przycisków udostępniania.
4. Wszystkie komentarze na blogu są moderowane przez autora bloga.
5. Korzystanie z bloga w całości jest nieodpłatne.